# IQI 04, Seminar 5

Produced with pdflatex and xfig

- Continuous one-qubit rotations.
- Application: Refocusing.
- Conditional rotations.
- Phase kick-back.
- The rotation-angle problem.

E. "Manny" Knill: knill@boulder.nist.gov

## **Summary of One-Qubit Gates**

| Gate picture | Symbol                             | Matrix form                                                                                            |
|--------------|------------------------------------|--------------------------------------------------------------------------------------------------------|
| 0            | $\mathbf{prep}(\mathfrak{o})$      |                                                                                                        |
| 0/1 b        | $oxed{\mathbf{meas}(Z \mapsto b)}$ |                                                                                                        |
|              | $\mathbf{not}$                     | $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$                                                         |
| н            | had                                | $\frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$                                     |
| δ            | $\mathbf{Z}_{\delta}$              | $\begin{pmatrix} e^{-i\delta/2} & 0 \\ 0 & e^{i\delta/2} \end{pmatrix}$                                |
| X<br>S       | $\mathbf{X}_{\delta}$              | $\begin{pmatrix} \cos(\delta/2) & -i\sin(\delta/2) \\ -i\sin(\delta/2) & \cos(\delta/2) \end{pmatrix}$ |
| <u>Υ</u> δ   | $\mathbf{Y}_{\delta}$              | $\begin{pmatrix} \cos(\delta/2) & -\sin(\delta/2) \\ \sin(\delta/2) & \cos(\delta/2) \end{pmatrix}$    |

•  $\mathbf{Z}_t$  defines a one-parameter group:

 $\mathbf{Z}_{s}$ 

 $\mathbf{Z}_t$ 

 $\mathbf{Z}_{s+t}$ 

•  $\mathbf{Z}_t$  defines a one-parameter group:

$$\begin{pmatrix} \mathbf{Z}_s \\ e^{-is/2} & 0 \\ 0 & e^{is/2} \end{pmatrix}$$

$$\mathbf{Z}_t$$
 =  $\mathbf{Z}_{s+t}$ 

•  $\mathbf{Z}_t$  defines a one-parameter group:

Z<sub>t</sub> defines a one-parameter group:

•  $\mathbf{Z}_t$  defines a one-parameter group:

• Physical implementation of  $\mathbf{Z}_t$  by a continuous process:

Time





•  $\mathbf{Z}_t$  defines a one-parameter group:



•  $\mathbf{Z}_t$  defines a one-parameter group:



•  $\mathbf{Z}_t$  defines a one-parameter group:



•  $\mathbf{Z}_t$  defines a one-parameter group:

$$\begin{pmatrix}
e^{-is/2} & 0 \\
0 & e^{is/2}
\end{pmatrix}
\begin{pmatrix}
e^{-it/2} & 0 \\
0 & e^{it/2}
\end{pmatrix} = \begin{pmatrix}
e^{-i(s+t)/2} & 0 \\
0 & e^{i(s+t)/2}
\end{pmatrix}$$



•  $\mathbf{Z}_t$  defines a one-parameter group:

$$\begin{pmatrix}
e^{-is/2} & 0 \\
0 & e^{is/2}
\end{pmatrix}
\begin{pmatrix}
e^{-it/2} & 0 \\
0 & e^{it/2}
\end{pmatrix} = \begin{pmatrix}
e^{-i(s+t)/2} & 0 \\
0 & e^{i(s+t)/2}
\end{pmatrix}$$



•  $\mathbf{Z}_t$  defines a one-parameter group:

$$\begin{pmatrix}
e^{-is/2} & 0 \\
0 & e^{is/2}
\end{pmatrix}
\begin{pmatrix}
e^{-it/2} & 0 \\
0 & e^{it/2}
\end{pmatrix} = \begin{pmatrix}
e^{-i(s+t)/2} & 0 \\
0 & e^{i(s+t)/2}
\end{pmatrix}$$



Z<sub>t</sub> defines a one-parameter group:

$$\begin{pmatrix}
e^{-is/2} & 0 \\
0 & e^{is/2}
\end{pmatrix}
\begin{pmatrix}
e^{-it/2} & 0 \\
0 & e^{it/2}
\end{pmatrix} = \begin{pmatrix}
e^{-i(s+t)/2} & 0 \\
0 & e^{i(s+t)/2}
\end{pmatrix}$$



• 
$$\mathbf{Z}_{t/N} = 1 - i \frac{t}{N} \begin{pmatrix} 1/2 & 0 \\ 0 & -1/2 \end{pmatrix} + O((t/N)^2).$$

Z<sub>t</sub> defines a one-parameter group:

$$\begin{pmatrix}
e^{-is/2} & 0 \\
0 & e^{is/2}
\end{pmatrix}
\begin{pmatrix}
e^{-it/2} & 0 \\
0 & e^{it/2}
\end{pmatrix} = \begin{pmatrix}
e^{-i(s+t)/2} & 0 \\
0 & e^{i(s+t)/2}
\end{pmatrix}$$



$$\begin{array}{c} \bullet \ \mathbf{Z}_{t/N} = \mathbbm{1} - i \frac{t}{N} \begin{pmatrix} 1/2 & 0 \\ 0 & -1/2 \end{pmatrix} + O((t/N)^2). \\ \\ \mathbf{Z}_t = \lim_{N \to \infty} \left( \mathbbm{1} - i \frac{t}{N} \begin{pmatrix} 1/2 & 0 \\ 0 & -1/2 \end{pmatrix} \right)^N = e^{-i(\sigma_z/2)t} \\ \\ \text{where } \sigma_z/2 \doteq \begin{pmatrix} 1/2 & 0 \\ 0 & -1/2 \end{pmatrix} \text{ is the } \textit{generator } \text{for } \mathbf{Z} \text{ rotations.} \end{array}$$

$$H = \sigma_z/2$$

$$t = \pi/2$$







Network notation for continuous evolution:







$$\mathbf{rot}(\hat{u}, \delta) = \cos(\delta/2) \mathbb{1} - i \sin(\delta/2) \hat{u} \cdot \vec{\sigma}$$

• Rotation by  $\delta$  around the  $\hat{u}$  axis.

$$\mathbf{rot}(\hat{u}, \delta) = \cos(\delta/2) \mathbb{1} - i \sin(\delta/2) \hat{u} \cdot \vec{\sigma}$$

- One-parameter group:  $\mathbf{rot}(\hat{u}, \delta)\mathbf{rot}(\hat{u}, \epsilon) = \mathbf{rot}(\hat{u}, \delta + \epsilon)$ .

$$\mathbf{rot}(\hat{u}, \delta) = \cos(\delta/2) \mathbb{1} - i \sin(\delta/2) \hat{u} \cdot \vec{\sigma}$$

- One-parameter group:  $\mathbf{rot}(\hat{u}, \delta)\mathbf{rot}(\hat{u}, \epsilon) = \mathbf{rot}(\hat{u}, \delta + \epsilon)$ .
- Exponential form:  $\mathbf{rot}(\hat{u}, \delta) = e^{-i(\hat{u}\cdot\vec{\sigma}/2)\delta}$ .

$$\mathbf{rot}(\hat{u}, \delta) = \cos(\delta/2) \mathbb{1} - i \sin(\delta/2) \hat{u} \cdot \vec{\sigma}$$

- One-parameter group:  $\mathbf{rot}(\hat{u}, \delta)\mathbf{rot}(\hat{u}, \epsilon) = \mathbf{rot}(\hat{u}, \delta + \epsilon)$ .
- Exponential form:  $\mathbf{rot}(\hat{u}, \delta) = e^{-i(\hat{u}\cdot\vec{\sigma}/2)\delta}$ .
- Why is  $e^{-i(\hat{u}\cdot\vec{\sigma}/2)\delta} = \cos(\delta/2)\mathbb{1} i\sin(\delta/2)\hat{u}\cdot\vec{\sigma}$ ?

$$\mathbf{rot}(\hat{u}, \delta) = \cos(\delta/2) \mathbb{1} - i \sin(\delta/2) \hat{u} \cdot \vec{\sigma}$$

- One-parameter group:  $\mathbf{rot}(\hat{u}, \delta)\mathbf{rot}(\hat{u}, \epsilon) = \mathbf{rot}(\hat{u}, \delta + \epsilon)$ .
- Exponential form:  $\mathbf{rot}(\hat{u}, \delta) = e^{-i(\hat{u}\cdot\vec{\sigma}/2)\delta}$ .
- Why is  $e^{-i(\hat{u}\cdot\vec{\sigma}/2)\delta} = \cos(\delta/2)\mathbb{1} i\sin(\delta/2)\hat{u}\cdot\vec{\sigma}$ ?
  - Use  $e^X=\mathbb{1}+X+X^2/2!+X^3/3!+X^4/4!+\dots$  and  $(-i\hat{u}\cdot\vec{\sigma})^k=(-i)^k(\hat{u}\cdot\vec{\sigma})^{k\bmod 2}$



$$\mathbf{rot}(\hat{u}, \delta) = \cos(\delta/2) \mathbb{1} - i \sin(\delta/2) \hat{u} \cdot \vec{\sigma}$$

- One-parameter group:  $\mathbf{rot}(\hat{u}, \delta)\mathbf{rot}(\hat{u}, \epsilon) = \mathbf{rot}(\hat{u}, \delta + \epsilon)$ .
- Exponential form:  $\mathbf{rot}(\hat{u}, \delta) = e^{-i(\hat{u}\cdot\vec{\sigma}/2)\delta}$ .
- Why is  $e^{-i(\hat{u}\cdot\vec{\sigma}/2)\delta} = \cos(\delta/2)\mathbb{1} i\sin(\delta/2)\hat{u}\cdot\vec{\sigma}$ ?

$$\mathbf{rot}(\hat{u}, \delta) = \cos(\delta/2) \mathbb{1} - i \sin(\delta/2) \hat{u} \cdot \vec{\sigma}$$

- One-parameter group:  $\mathbf{rot}(\hat{u}, \delta)\mathbf{rot}(\hat{u}, \epsilon) = \mathbf{rot}(\hat{u}, \delta + \epsilon)$ .
- Exponential form:  $\mathbf{rot}(\hat{u}, \delta) = e^{-i(\hat{u}\cdot\vec{\sigma}/2)\delta}$ .
- Why is  $e^{-i(\hat{u}\cdot\vec{\sigma}/2)\delta} = \cos(\delta/2)\mathbb{1} i\sin(\delta/2)\hat{u}\cdot\vec{\sigma}$ ?
  - Or use:1.  $e^{\begin{pmatrix} a & 0 \\ 0 & b \end{pmatrix}} = \begin{pmatrix} e^a & 0 \\ 0 & e^b \end{pmatrix}$

$$\mathbf{rot}(\hat{u}, \delta) = \cos(\delta/2) \mathbb{1} - i \sin(\delta/2) \hat{u} \cdot \vec{\sigma}$$

- One-parameter group:  $\mathbf{rot}(\hat{u}, \delta)\mathbf{rot}(\hat{u}, \epsilon) = \mathbf{rot}(\hat{u}, \delta + \epsilon)$ .
- Exponential form:  $\mathbf{rot}(\hat{u}, \delta) = e^{-i(\hat{u}\cdot\vec{\sigma}/2)\delta}$ .
- Why is  $e^{-i(\hat{u}\cdot\vec{\sigma}/2)\delta} = \cos(\delta/2)\mathbb{1} i\sin(\delta/2)\hat{u}\cdot\vec{\sigma}$ ?
  - Or use:1.  $e^{\begin{pmatrix} a & 0 \\ 0 & b \end{pmatrix}} = \begin{pmatrix} e^a & 0 \\ 0 & e^b \end{pmatrix}$ 
    - 2. So  $e^{-i(\sigma_z/2)\delta} = \cos(\delta/2) 1 i \sin(\delta/2) \sigma_z$ .

$$\mathbf{rot}(\hat{u}, \delta) = \cos(\delta/2) \mathbb{1} - i \sin(\delta/2) \hat{u} \cdot \vec{\sigma}$$

- One-parameter group:  $\mathbf{rot}(\hat{u}, \delta)\mathbf{rot}(\hat{u}, \epsilon) = \mathbf{rot}(\hat{u}, \delta + \epsilon)$ .
- Exponential form:  $\mathbf{rot}(\hat{u}, \delta) = e^{-i(\hat{u}\cdot\vec{\sigma}/2)\delta}$ .
- Why is  $e^{-i(\hat{u}\cdot\vec{\sigma}/2)\delta} = \cos(\delta/2)\mathbb{1} i\sin(\delta/2)\hat{u}\cdot\vec{\sigma}$ ?
  - Or use:1.  $e^{\begin{pmatrix} a & 0 \\ 0 & b \end{pmatrix}} = \begin{pmatrix} e^a & 0 \\ 0 & e^b \end{pmatrix}$ 
    - 2. So  $e^{-i(\sigma_z/2)\delta} = \cos(\delta/2) 1 i \sin(\delta/2) \sigma_z$ .
    - 3. Choose  $\hat{v}$  and  $\epsilon$  so that  $\mathbf{rot}(\hat{v}, \epsilon)\sigma_z\mathbf{rot}(\hat{v}, -\epsilon) = \hat{u} \cdot \vec{\sigma}$ .

$$\mathbf{rot}(\hat{u}, \delta) = \cos(\delta/2) \mathbb{1} - i \sin(\delta/2) \hat{u} \cdot \vec{\sigma}$$

- One-parameter group:  $\mathbf{rot}(\hat{u}, \delta)\mathbf{rot}(\hat{u}, \epsilon) = \mathbf{rot}(\hat{u}, \delta + \epsilon)$ .
- Exponential form:  $\mathbf{rot}(\hat{u}, \delta) = e^{-i(\hat{u}\cdot\vec{\sigma}/2)\delta}$ .
- Why is  $e^{-i(\hat{u}\cdot\vec{\sigma}/2)\delta} = \cos(\delta/2)\mathbb{1} i\sin(\delta/2)\hat{u}\cdot\vec{\sigma}$ ?
  - Or use:1.  $e^{\begin{pmatrix} a & 0 \\ 0 & b \end{pmatrix}} = \begin{pmatrix} e^a & 0 \\ 0 & e^b \end{pmatrix}$ 
    - **2.** So  $e^{-i(\sigma_z/2)\delta} = \cos(\delta/2) \mathbb{1} i \sin(\delta/2) \sigma_z$ .
    - 3. Choose  $\hat{v}$  and  $\epsilon$  so that  $\mathbf{rot}(\hat{v}, \epsilon)\sigma_z\mathbf{rot}(\hat{v}, -\epsilon) = \hat{u} \cdot \vec{\sigma}$ .
    - 4.  $UX^kU^{\dagger} = UXX \dots U^{\dagger} = UXU^{\dagger}UXU^{\dagger} \dots = (UXU^{\dagger})^k$ .

$$\mathbf{rot}(\hat{u}, \delta) = \cos(\delta/2) \mathbb{1} - i \sin(\delta/2) \hat{u} \cdot \vec{\sigma}$$

- One-parameter group:  $\mathbf{rot}(\hat{u}, \delta)\mathbf{rot}(\hat{u}, \epsilon) = \mathbf{rot}(\hat{u}, \delta + \epsilon)$ .
- Exponential form:  $\mathbf{rot}(\hat{u}, \delta) = e^{-i(\hat{u}\cdot\vec{\sigma}/2)\delta}$ .
- Why is  $e^{-i(\hat{u}\cdot\vec{\sigma}/2)\delta} = \cos(\delta/2)\mathbb{1} i\sin(\delta/2)\hat{u}\cdot\vec{\sigma}$ ?
  - Or use:1.  $e^{\begin{pmatrix} a & 0 \\ 0 & b \end{pmatrix}} = \begin{pmatrix} e^a & 0 \\ 0 & e^b \end{pmatrix}$ 
    - 2. So  $e^{-i(\sigma_z/2)\delta} = \cos(\delta/2) 1 i \sin(\delta/2) \sigma_z$ .
    - 3. Choose  $\hat{v}$  and  $\epsilon$  so that  $\mathbf{rot}(\hat{v}, \epsilon)\sigma_z\mathbf{rot}(\hat{v}, -\epsilon) = \hat{u} \cdot \vec{\sigma}$ .
    - 4.  $UX^kU^{\dagger} = UXX \dots U^{\dagger} = UXU^{\dagger}UXU^{\dagger} \dots = (UXU^{\dagger})^k$ .
    - 5.  $Ue^{X}U^{\dagger} = U(\mathbb{1} + X + X^{2}/2 + ...)U^{\dagger}$ =  $\mathbb{1} + UXU^{\dagger} + (UXU^{\dagger})^{2}/2 + ... = e^{UXU^{\dagger}}$ .



$$\mathbf{rot}(\hat{u}, \delta) = \cos(\delta/2) \mathbb{1} - i \sin(\delta/2) \hat{u} \cdot \vec{\sigma}$$

- One-parameter group:  $\mathbf{rot}(\hat{u}, \delta)\mathbf{rot}(\hat{u}, \epsilon) = \mathbf{rot}(\hat{u}, \delta + \epsilon)$ .
- Exponential form:  $\mathbf{rot}(\hat{u}, \delta) = e^{-i(\hat{u}\cdot\vec{\sigma}/2)\delta}$ .
- Why is  $e^{-i(\hat{u}\cdot\vec{\sigma}/2)\delta} = \cos(\delta/2)\mathbb{1} i\sin(\delta/2)\hat{u}\cdot\vec{\sigma}$ ?
  - Or use:1.  $e^{\begin{pmatrix} a & 0 \\ 0 & b \end{pmatrix}} = \begin{pmatrix} e^a & 0 \\ 0 & e^b \end{pmatrix}$ 
    - 2. So  $e^{-i(\sigma_z/2)\delta} = \cos(\delta/2) 1 i \sin(\delta/2) \sigma_z$ .
    - 3. Choose  $\hat{v}$  and  $\epsilon$  so that  $\mathbf{rot}(\hat{v}, \epsilon)\sigma_z\mathbf{rot}(\hat{v}, -\epsilon) = \hat{u} \cdot \vec{\sigma}$ .
    - 4.  $UX^kU^{\dagger} = UXX...U^{\dagger} = UXU^{\dagger}UXU^{\dagger}... = (UXU^{\dagger})^k$ .
    - 5.  $Ue^X U^{\dagger} = U(\mathbb{1} + X + X^2/2 + ...)U^{\dagger}$ =  $\mathbb{1} + UXU^{\dagger} + (UXU^{\dagger})^2/2 + ... = e^{UXU^{\dagger}}$ .
    - 6.  $e^{-i(\hat{u}\cdot\vec{\sigma}/2)\delta} = \mathbf{rot}(\hat{v},\epsilon)e^{-i(\hat{\sigma}_z/2)\delta}\mathbf{rot}(\hat{v},-\epsilon)$   $= \mathbf{rot}(\hat{v},\epsilon)(\cos(\delta/2)\mathbb{1} - i\sin(\delta/2)\sigma_z)\mathbf{rot}(\hat{v},-\epsilon)$  $= \cos(\delta/2)\mathbb{1} - i\sin(\delta/2)\hat{u}\cdot\vec{\sigma}$



• Rotation by  $\delta$  around the  $\hat{u}$  axis.

$$\mathbf{rot}(\hat{u}, \delta) = \cos(\delta/2) \mathbb{1} - i \sin(\delta/2) \hat{u} \cdot \vec{\sigma}$$

- One-parameter group:  $\mathbf{rot}(\hat{u}, \delta)\mathbf{rot}(\hat{u}, \epsilon) = \mathbf{rot}(\hat{u}, \delta + \epsilon)$ .
- Exponential form:  $\mathbf{rot}(\hat{u}, \delta) = e^{-i(\hat{u}\cdot\vec{\sigma}/2)\delta}$ .
- Why is  $e^{-i(\hat{u}\cdot\vec{\sigma}/2)\delta} = \cos(\delta/2)\mathbb{1} i\sin(\delta/2)\hat{u}\cdot\vec{\sigma}$ ?

• Rotation by  $\delta$  around the  $\hat{u}$  axis.

$$\mathbf{rot}(\hat{u}, \delta) = \cos(\delta/2) \mathbb{1} - i \sin(\delta/2) \hat{u} \cdot \vec{\sigma}$$

- One-parameter group:  $\mathbf{rot}(\hat{u}, \delta)\mathbf{rot}(\hat{u}, \epsilon) = \mathbf{rot}(\hat{u}, \delta + \epsilon)$ .
- Exponential form:  $\mathbf{rot}(\hat{u}, \delta) = e^{-i(\hat{u}\cdot\vec{\sigma}/2)\delta}$ .
- Why is  $e^{-i(\hat{u}\cdot\vec{\sigma}/2)\delta} = \cos(\delta/2)\mathbb{1} i\sin(\delta/2)\hat{u}\cdot\vec{\sigma}$ ?
- $J_{\hat{u}} = \hat{u} \cdot \vec{\sigma}/2$  is the spin operator along  $\hat{u}$ .

• Rotation by  $\delta$  around the  $\hat{u}$  axis.

$$\mathbf{rot}(\hat{u}, \delta) = \cos(\delta/2) \mathbb{1} - i \sin(\delta/2) \hat{u} \cdot \vec{\sigma}$$

- One-parameter group:  $\mathbf{rot}(\hat{u}, \delta)\mathbf{rot}(\hat{u}, \epsilon) = \mathbf{rot}(\hat{u}, \delta + \epsilon)$ .
- Exponential form:  $\mathbf{rot}(\hat{u}, \delta) = e^{-i(\hat{u}\cdot\vec{\sigma}/2)\delta}$ .
- Why is  $e^{-i(\hat{u}\cdot\vec{\sigma}/2)\delta} = \cos(\delta/2)\mathbb{1} i\sin(\delta/2)\hat{u}\cdot\vec{\sigma}$ ?
- $J_{\hat{u}} = \hat{u} \cdot \vec{\sigma}/2$  is the spin operator along  $\hat{u}$ .

 $H=\hat{u}\cdot\vec{\sigma}/2$  The qubit evolves t ... for time t. Hamiltonian of the evolution.

• Rotation by  $\delta$  around the  $\hat{u}$  axis.

$$\mathbf{rot}(\hat{u}, \delta) = \cos(\delta/2) \mathbb{1} - i \sin(\delta/2) \hat{u} \cdot \vec{\sigma}$$

- One-parameter group:  $\mathbf{rot}(\hat{u}, \delta)\mathbf{rot}(\hat{u}, \epsilon) = \mathbf{rot}(\hat{u}, \delta + \epsilon)$ .
- Exponential form:  $\mathbf{rot}(\hat{u}, \delta) = e^{-i(\hat{u}\cdot\vec{\sigma}/2)\delta}$ .
- Why is  $e^{-i(\hat{u}\cdot\vec{\sigma}/2)\delta} = \cos(\delta/2)\mathbb{1} i\sin(\delta/2)\hat{u}\cdot\vec{\sigma}$ ?
- $J_{\hat{u}} = \hat{u} \cdot \vec{\sigma}/2$  is the spin operator along  $\hat{u}$ .

 $H=\hat{u}\cdot\vec{\sigma}/2$  The qubit evolves t H is the with H. ... for time t. Hamiltonian of the evolution.

- The Hamiltonian is applied, or is part of the qubit's dynamics.
  - Note units: Energy units are angular frequency,  $\hbar=1$ .



#### **Example:** Spin 1/2 Qubit

• Spin 1/2 in oriented space: One particle in a superposition of the states "up" ( $|\uparrow\rangle$ ) and "down" ( $|\downarrow\rangle$ ).



#### **Example:** Spin 1/2 Qubit

• Spin 1/2 in oriented space: One particle in a superposition of the states "up" ( $|\uparrow\rangle$ ) and "down" ( $|\downarrow\rangle$ ).



- Apply a magnetic field in direction  $-\hat{u}$  with magnitude B to cause the spin to evolve with Hamiltonian  $B\mu J_{\hat{u}}$ .

...in units where  $\hbar = 1$ .

### **Example:** Spin 1/2 Qubit

• Spin 1/2 in oriented space: One particle in a superposition of the states "up" ( $|\uparrow\rangle$ ) and "down" ( $|\downarrow\rangle$ ).



- Apply a magnetic field in direction  $-\hat{u}$  with magnitude B to cause the spin to evolve with Hamiltonian  $B\mu J_{\hat{u}}$ .

... in units where  $\hbar = 1$ .

$$|\psi\rangle$$
  $B\mu J_{\hat{u}}$   $e^{-iB\mu J_{\hat{u}}t}|\psi\rangle$ 















• Remove the effect of  $\epsilon J_{\hat{u}}$  dynamics with  $\epsilon$  and  $\hat{u}$  unknown?

 $\epsilon J_{\hat{m{u}}}$ 

t



















$$\hat{z}_{180} \qquad t/4 \qquad t/4 \qquad t/4 \qquad t/4 \qquad \hat{z}_{\hat{w}} \qquad \hat{v} = \begin{pmatrix} -u_x \\ u_y \\ -u_z \end{pmatrix} \quad \hat{v} = \begin{pmatrix} u_x \\ -u_y \\ -u_z \end{pmatrix} \quad \hat{u} = \begin{pmatrix} u_x \\ u_y \\ u_z \end{pmatrix}$$









$$\begin{pmatrix}
1 - i(\epsilon t/4) \left( -u_x J_x - u_y J_y + u_z J_z \right) + O((\epsilon t/4)^2) \right) \\
\left( 1 - i(\epsilon t/4) \left( -u_x J_x + u_y J_y - u_z J_z \right) + O((\epsilon t/4)^2) \right) \\
\left( 1 - i(\epsilon t/4) \left( u_x J_x - u_y J_y - u_z J_z \right) + O((\epsilon t/4)^2) \right) \\
\left( 1 - i(\epsilon t/4) \left( u_x J_x - u_y J_y - u_z J_z \right) + O((\epsilon t/4)^2) \right) \\
\left( 1 - i(\epsilon t/4) \left( u_x J_x + u_y J_y + u_z J_z \right) + O((\epsilon t/4)^2) \right)$$



• Remove the effect of  $\epsilon J_{\hat{u}}$  dynamics with  $\epsilon$  and  $\hat{u}$  unknown?



$$\frac{\epsilon J_{\hat{t}}}{\left(1 - i(\epsilon t/4)\left(-u_x J_x - u_y J_y + u_z J_z - u_x J_x + u_y J_y - u_z J_z - u_x J_x + u_y J_y - u_z J_z - u_x J_x + u_y J_y - u_z J_z - u_x J_x + u_y J_y - u_z J_z - u_x J_x + u_y J_y - u_z J_z - u_x J_x + u_y J_y + u_z J_z\right) + O(4(\epsilon t/4)^2)\right)}$$

logically approximately equivalent up to  $O(4(\epsilon t/4)^2)$ 

A 100/04/2









• Implementation of the conditional  $\mathbf{Z}_{\delta}$  gate,  $\mathbf{c}\mathbf{Z}_{\delta}^{(\mathsf{AB})}$ .





• Implementation of the conditional  $\mathbf{Z}_{\delta}$  gate,  $\mathbf{c}\mathbf{Z}_{\delta}^{(\mathsf{AB})}$ .





• Implementation of the conditional  $\mathbf{Z}_{\delta}$  gate,  $\mathbf{c}\mathbf{Z}_{\delta}^{(\mathsf{AB})}$ .





• Implementation of the conditional  $\mathbf{Z}_{\delta}$  gate,  $\mathbf{c}\mathbf{Z}_{\delta}^{(\mathsf{AB})}$ .







• Implementation of the conditional  $\mathbf{Z}_{\delta}$  gate,  $\mathbf{c}\mathbf{Z}_{\delta}^{(\mathsf{AB})}$ .







• Implementation of the conditional  $\mathbf{Z}_{\delta}$  gate,  $\mathbf{c}\mathbf{Z}_{\delta}^{(\mathsf{AB})}$ .





### **Conditional** Z-Rotations

• Implementation of the conditional  $\mathbf{Z}_{\delta}$  gate,  $\mathbf{c}\mathbf{Z}_{\delta}^{(\mathsf{AB})}$ .



Implementation with two cnots.





### **Conditional** Z-Rotations

• Implementation of the conditional  $\mathbf{Z}_{\delta}$  gate,  $\mathbf{c}\mathbf{Z}_{\delta}^{(\mathsf{AB})}$ .



Implementation with two cnots.





### **Conditional** Z-Rotations

• Implementation of the conditional  $\mathbf{Z}_{\delta}$  gate,  $\mathbf{c}\mathbf{Z}_{\delta}^{(\mathsf{AB})}$ .



Implementation with two cnots.



















$$\mathbf{X}_{\delta} = \cos(\delta/2) \mathbb{1} - i \sin(\delta/2) \sigma_x$$







Conditional rotations conditionally kick back phases.



• Phase kickback for any conditional operation. Suppose that  $U|\psi\rangle=e^{i\delta}|\psi\rangle$ .



Conditional rotations conditionally kick back phases.

$$\alpha | \mathbf{o} \rangle + \beta | \mathbf{1} \rangle$$

$$| + \rangle = \frac{1}{\sqrt{2}} (| \mathbf{o} \rangle + | \mathbf{1} \rangle)$$

$$\mathbf{X}_{\delta} = \cos(\delta/2) \mathbb{1} - i \sin(\delta/2) \sigma_{x}$$

$$\mathbf{X}_{\delta} | + \rangle = (\cos(\delta/2) - i \sin(\delta/2)) | + \rangle = e^{-i\delta/2} | + \rangle$$

• Phase kickback for any conditional operation. Suppose that  $U|\psi\rangle=e^{i\delta}|\psi\rangle$ .

$$\begin{array}{c|c} \alpha | \mathbf{o} \rangle + \beta | \mathbf{1} \rangle & \mathbf{A} \\ | \psi \rangle & \mathbf{B} \\ | (\alpha | \mathbf{o} \rangle_{\!\!\mathsf{A}} + \beta | \mathbf{1} \rangle_{\!\!\mathsf{A}}) | \psi \rangle_{\!\!\mathsf{B}} \end{array}$$

Conditional rotations conditionally kick back phases.

$$\alpha | \mathbf{o} \rangle + \beta | \mathbf{1} \rangle$$

$$| + \rangle = \frac{1}{\sqrt{2}} (| \mathbf{o} \rangle + | \mathbf{1} \rangle)$$

$$\mathbf{X}_{\delta} = \cos(\delta/2) \mathbb{1} - i \sin(\delta/2) \sigma_{x}$$

$$\mathbf{X}_{\delta} | + \rangle = (\cos(\delta/2) - i \sin(\delta/2)) | + \rangle = e^{-i\delta/2} | + \rangle$$

• Phase kickback for any conditional operation. Suppose that  $U|\psi\rangle=e^{i\delta}|\psi\rangle$ .

$$\alpha | \mathbf{o} \rangle + \beta | \mathbf{1} \rangle \qquad \qquad \mathbf{B} \qquad \qquad \mathbf{U} \qquad \qquad \mathbf{B} \qquad \qquad \mathbf{U} \qquad \qquad \mathbf{A} \qquad \qquad \mathbf{B} \qquad \qquad \mathbf{U} \qquad \qquad \mathbf{A} \qquad \qquad \mathbf{B} \qquad \qquad \mathbf{U} \qquad \qquad \mathbf{A} \qquad \qquad \mathbf{B} \qquad \qquad \mathbf{U} \qquad \qquad \mathbf{A} \qquad \qquad \mathbf{B} \qquad \qquad \mathbf{U} \qquad \qquad \mathbf{A} \qquad \qquad \mathbf{B} \qquad \qquad \mathbf{U} \qquad \qquad \mathbf{A} \qquad \qquad \mathbf{B} \qquad \qquad \mathbf{U} \qquad \qquad \mathbf{A} \qquad \qquad \mathbf{B} \qquad \qquad \mathbf{U} \qquad \qquad \mathbf{A} \qquad \qquad \mathbf{B} \qquad \qquad \mathbf{U} \qquad \qquad \mathbf{A} \qquad \qquad \mathbf{A} \qquad \qquad \mathbf{B} \qquad \qquad \mathbf{U} \qquad \qquad \mathbf{A} \qquad \qquad \mathbf{A} \qquad \qquad \mathbf{B} \qquad \qquad \mathbf{U} \qquad \qquad \mathbf{A} \qquad \qquad \mathbf{A} \qquad \qquad \mathbf{A} \qquad \qquad \mathbf{B} \qquad \qquad \mathbf{U} \qquad \qquad \mathbf{A} \qquad \qquad \mathbf{B} \qquad \qquad \mathbf{U} \qquad \qquad \mathbf{A} \qquad \mathbf{A}$$

12

Conditional rotations conditionally kick back phases.

$$\alpha | \mathbf{o} \rangle + \beta | \mathbf{1} \rangle$$

$$| + \rangle = \frac{1}{\sqrt{2}} (| \mathbf{o} \rangle + | \mathbf{1} \rangle)$$

$$\mathbf{X}_{\delta} = \cos(\delta/2) \mathbb{1} - i \sin(\delta/2) \sigma_{x}$$

$$\mathbf{X}_{\delta} | + \rangle = (\cos(\delta/2) - i \sin(\delta/2)) | + \rangle = e^{-i\delta/2} | + \rangle$$

• Phase kickback for any conditional operation. Suppose that  $U|\psi\rangle=e^{i\delta}|\psi\rangle$ .

$$\begin{array}{c|c} \alpha | \mathbf{o} \rangle + \beta | \mathbf{1} \rangle & \mathbf{A} \\ | \psi \rangle & \mathbf{B} \\ \hline & (\alpha | \mathbf{o} \rangle_{\mathbf{A}} + \beta | \mathbf{1} \rangle_{\mathbf{A}}) | \psi \rangle_{\mathbf{B}} \\ & = (e^{-i\delta/2} \alpha | \mathbf{o} \rangle_{\mathbf{A}} + e^{i\delta/2} \beta | \mathbf{1} \rangle_{\mathbf{A}}) e^{i\delta/2} | \psi \rangle_{\mathbf{B}} \end{array}$$

Conditional rotations conditionally kick back phases.

$$|+\rangle = \frac{1}{\sqrt{2}}(|\mathfrak{o}\rangle + |\mathfrak{1}\rangle)$$

$$\mathbf{X}_{\delta} = \cos(\delta/2)\mathbb{1} - i\sin(\delta/2)\sigma_{x}$$

$$\mathbf{X}_{\delta}|+\rangle = (\cos(\delta/2) - i\sin(\delta/2))|+\rangle = e^{-i\delta/2}|+\rangle$$

• Phase kickback for any conditional operation. Suppose that  $U|\psi\rangle=e^{i\delta}|\psi\rangle$ .

$$\begin{array}{c|c} \alpha | \mathbf{o} \rangle + \beta | \mathbf{1} \rangle & \mathbf{A} & \mathbf{Z}_{\delta}(\alpha | \mathbf{o} \rangle + \beta | \mathbf{1} \rangle) \\ | \psi \rangle & \mathbf{B} & \mathbf{U} & e^{i\delta/2} | \psi \rangle \\ & \underline{(\alpha | \mathbf{o} \rangle_{\!\!\mathsf{A}} + \beta | \mathbf{1} \rangle_{\!\!\mathsf{A}}) | \psi_{\rangle_{\!\!\mathsf{B}}}} & (\alpha | \mathbf{o} \rangle_{\!\!\mathsf{A}} + e^{i\delta} \beta | \mathbf{1} \rangle_{\!\!\mathsf{A}}) | \psi_{\rangle_{\!\!\mathsf{B}}} \\ & \underline{= (e^{-i\delta/2} \alpha | \mathbf{o} \rangle_{\!\!\mathsf{A}} + e^{i\delta/2} \beta | \mathbf{1} \rangle_{\!\!\mathsf{A}}) e^{i\delta/2} | \psi_{\rangle_{\!\!\mathsf{B}}}} \end{array}$$

# The Rotation Angle Problem (RAP)

Given: One-qubit device, a "black box".

Promise: It applies  $\mathbf{Z}_{\delta}$  for some unknown  $\delta$ .

Problem: Determine  $\delta$  to within  $\epsilon$  with high confidence.



# The Rotation Angle Problem (RAP)

Given: One-qubit device, a "black box".

Promise: It applies  $\mathbf{Z}_{\delta}$  for some unknown  $\delta$ .

Problem: Determine  $\delta$  to within  $\epsilon$  with high confidence.

Goal: Solve the problem using

-  $O(\frac{1}{\epsilon} \log \log(\frac{1}{\epsilon}))$  black-box applications ("queries").

-  $O(\log(\frac{1}{\epsilon})\log\log(\frac{1}{\epsilon}))$  one-qubit measurements.

# The Rotation Angle Problem (RAP)

Given: One-qubit device, a "black box".

Promise: It applies  $\mathbf{Z}_{\delta}$  for some unknown  $\delta$ .

Problem: Determine  $\delta$  to within  $\epsilon$  with high confidence.

- Goal: Solve the problem using
  - $O(\frac{1}{\epsilon} \log \log(\frac{1}{\epsilon}))$  black-box applications ("queries").
  - $O(\log(\frac{1}{\epsilon})\log\log(\frac{1}{\epsilon}))$  one-qubit measurements.
- O(f(...)) ("order of f(...)") means "less than Cf(...) for some sufficiently large constant C".



















 Solve RAP by obtaining measurement statistics after modified queries that rotate |o> toward |1>.



• Cannot distinguish between  $\delta$  and  $\delta+180^{\circ}$ .





## **Measurement Statistics**



• Coin flip statistics for  $prob(\mathfrak{b} = \mathfrak{1}) = p$ , N trials:

Expectation:  $\langle \mathfrak{b} \rangle = p$ .

Variance: v = p(1-p)/N.

## **Measurement Statistics**



• Coin flip statistics for  $prob(\mathfrak{b} = \mathfrak{1}) = p$ , N trials:

Expectation:  $\langle \mathfrak{b} \rangle = p$ .

Variance: v = p(1-p)/N.

• The probability that  $\bar{\mathfrak{b}}=\sum_i \mathfrak{b}_i/N$  is more than  $\Delta$  away from p is  $C(\Delta)<2e^{-\Delta^2N/2}$  Chernoff 1952 [1]

A 100/04/2 15

## **Measurement Statistics**



• Coin flip statistics for  $prob(\mathfrak{b} = \mathfrak{1}) = p$ , N trials:

Expectation:  $\langle \mathfrak{b} \rangle = p$ .

Variance: v = p(1-p)/N.

- The probability that  $ar{\mathfrak{b}}=\sum_i \mathfrak{b}_i/N$  is more than  $\Delta$  away from p is  $C(\Delta) < 2e^{-\Delta^2 N/2}$  Chernoff 1952 [1]
- From N pairs of experiments, get angle estimate  $\tilde{\delta}$ :  $\tilde{\delta} \in \delta \pm \frac{\alpha}{\sqrt{N}}$  with probability  $> 1 2e^{-\alpha^2/16}$ .

#### **Measurement Statistics**



• Coin flip statistics for  $prob(\mathfrak{b} = \mathfrak{1}) = p$ , N trials:

Expectation:  $\langle \mathfrak{b} \rangle = p$ .

Variance: v = p(1-p)/N.

- The probability that  $ar{\mathfrak{b}}=\sum_i \mathfrak{b}_i/N$  is more than  $\Delta$  away from p is  $C(\Delta)<2e^{-\Delta^2N/2}$  Chernoff 1952 [1]
- From N pairs of experiments, get angle estimate  $\tilde{\delta}$ :  $\tilde{\delta} \in \delta \pm \frac{\alpha}{\sqrt{N}}$  with probability  $> 1 2e^{-\alpha^2/16}$ .
- Need to improve accuracy and reduce measurement count.

**1.** Determine  $\delta$  to within  $\pm \pi/8$ .



**2.** Use  $\mathbf{bbZ}^2$  to determine  $\delta$  to within  $\pm \pi/16$ .



**1.** Determine  $\delta$  to within  $\pm \pi/8$ .



**2.** Use  $\mathbf{bbZ}^2$  to determine  $\delta$  to within  $\pm \pi/16$ .



**1.** Determine  $\delta$  to within  $\pm \pi/8$ .



**2.** Use  $\mathbf{b}\mathbf{b}\mathbf{Z}^2$  to determine  $\delta$  to within  $\pm \pi/16$ .



**1.** Determine  $\delta$  to within  $\pm \pi/8$ .



**2.** Use  $\mathbf{bbZ}^2$  to determine  $\delta$  to within  $\pm \pi/16$ .



**3.** Use  $\mathbf{bbZ}^4$  to determine  $\delta$  to within  $\pm \pi/32$ .



**1.** Determine  $\delta$  to within  $\pm \pi/8$ .



**2.** Use  $\mathbf{bbZ}^2$  to determine  $\delta$  to within  $\pm \pi/16$ .



**3.** Use  $\mathbf{bbZ}^4$  to determine  $\delta$  to within  $\pm \pi/32$ .



**1.** Determine  $\delta$  to within  $\pm \pi/8$ .



**2.** Use  $\mathbf{bbZ}^2$  to determine  $\delta$  to within  $\pm \pi/16$ .



**3.** Use  $\mathbf{bbZ}^4$  to determine  $\delta$  to within  $\pm \pi/32$ .



**1.** Determine  $\delta$  to within  $\pm \pi/8$ .



**2.** Use  $\mathbf{bbZ}^2$  to determine  $\delta$  to within  $\pm \pi/16$ .



**3.** Use  $\mathbf{b}\mathbf{b}\mathbf{Z}^4$  to determine  $\delta$  to within  $\pm \pi/32$ .





Let N be the number of steps.
 Let k be the number of measurements in each step.



- Let N be the number of steps.
   Let k be the number of measurements in each step.
- Approximation: Obtain  $\delta$  within  $\epsilon = \pi/2^{N+2}$ .



- Let N be the number of steps.
   Let k be the number of measurements in each step.
- Approximation: Obtain  $\delta$  within  $\epsilon = \pi/2^{N+2}$ .
- Confidence:  $> 1 2Ne^{-c_1k}$  for some constant  $c_1$ . Confidence  $1 - e^{-C}$  requires

$$k > \log(2N/c_1) + C/c_1 = O(\log\log(\frac{1}{\epsilon})).$$



- Let N be the number of steps.
   Let k be the number of measurements in each step.
- Approximation: Obtain  $\delta$  within  $\epsilon = \pi/2^{N+2}$ .
- Confidence:  $> 1 2Ne^{-c_1k}$  for some constant  $c_1$ . Confidence  $1 e^{-C}$  requires

$$k > \log(2N/c_1) + C/c_1 = O(\log\log(\frac{1}{\epsilon})).$$

• Number of measurements:  $kN = O(\log(\frac{1}{\epsilon})\log\log(\frac{1}{\epsilon}))$ .



- Let N be the number of steps.
   Let k be the number of measurements in each step.
- Approximation: Obtain  $\delta$  within  $\epsilon = \pi/2^{N+2}$ .
- Confidence:  $> 1 2Ne^{-c_1k}$  for some constant  $c_1$ . Confidence  $1 e^{-C}$  requires

$$k > \log(2N/c_1) + C/c_1 = O(\log\log(\frac{1}{\epsilon})).$$

- Number of measurements:  $kN = O(\log(\frac{1}{\epsilon})\log\log(\frac{1}{\epsilon}))$ .
- Number of black box queries:  $< k2^{N+1} = O(\frac{1}{\epsilon} \log \log(\frac{1}{\epsilon}))$

#### **Contents**

| Title: IQI 04, Seminar 5                     |     | 0   |
|----------------------------------------------|-----|-----|
| Summary of One-Qubit Gates                   |     |     |
| Continuous Z-Rotation                        | top | . 2 |
| Continuously Evolving Qubits                 |     |     |
| Continuous Rotations Around Any Axis I       | top | . 4 |
| Continuous Rotations Around Any Axis II      |     |     |
| Continuous Rotations Around Any Axis III     |     |     |
| Example: Spin 1/2 Qubit                      |     |     |
| Application: Refocusing $J_z$                |     |     |
| Application: Refocusing an Unknown Direction |     |     |
| Conditional Z-Rotations                      | •   |     |

| Phase Kick-Back I                | . top | 11   |
|----------------------------------|-------|------|
| Phase Kick-Back II               | .top  | . 12 |
| The Rotation Angle Problem (RAP) | top.  | . 13 |
| RAP by Repeat Measurements? I    | top.  | 14   |
| RAP by Repeat Measurements? II   | top.  | . 15 |
| Measurement Statistics           | top.  | . 16 |
| RAP by Iteration                 | . top | 17   |
| RAP by Iteration: Resources      | top.  | . 18 |
| References                       |       | . 20 |



#### References

[1] H. Chernoff. A measure of the asymptotic efficiency for tests of a hypothesis based on the sum of observations. *Ann. Math. Stat.*, 23:493–509, 1952.

